

UVTOP335

- Deep Ultraviolet Light Emission Source
- 340 nm, 240-400 μW
- TO metal can with SiO₂ glass lens
- Blood Gas Measurements

Description

UVTOP335 is a series of **AIGaN** based deep UV-LEDs with a typical peak wavelength of **340nm** and optical output power of **240-400** μ W. It comes in hermetically sealed TO39 or TO18 metal can package with ball lens, hemispherical lens, or flat glass window configuration. **UVTOP335** is widely used for **blood gas measurements**, **nitrogen urea measurements**, and UV-curing applications

Maximum Ratings (T_{CASE} = 25°C)

Parameter	Symbol	Va	11	
		Min.	Max.	Unit
Power Dissipation, DC	PD		180	mW
Forward Current, DC	IF		30	mA
Pulsed Current (1% duty cycle, 1kHz)	I _{FP}		200	mA
Reverse Voltage	U _R	-6		V
Operating Temperature	T _{opr}	-30	+55	°C
Storage Temperature	T _{stg}	-30	+100	°C
Soldering Temperature (max. 5s)	T _{sol}		+190	°C

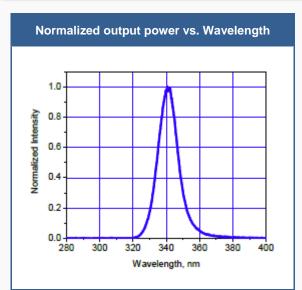
General Characteristics (T_{CASE} = 25°C, I_F = 20mA)

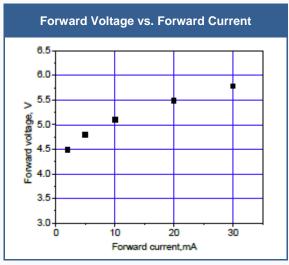
Parameter	Symbol	Values			l Incit
		Min.*	Тур.*	Max.*	Unit
Peak Wavelength	λ _P	335	340	345	nm
Half Width (FWHM)	$\Delta \lambda$		15	20	nm
Forward Voltage	UF		5.0	6.2	V

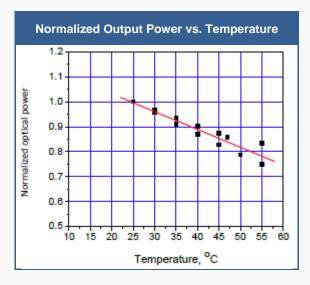
*wavelength measurement tolerance: ± 2 nm, forward voltage measurement tolerance: ± 2 %

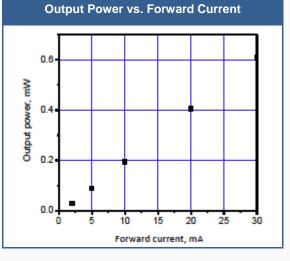
Electro-Optical Characteristics (T_{CASE} = 25°C, I_F = 20mA)

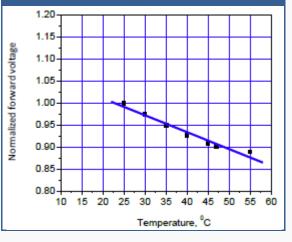
Part Number	Package	Window	Optica Pour	View. Angle 2⊖1/2 (°)	
			Min.*	Тур.*	Typ.
UVTOP335-FW-TO39		Flat Window	240	400	120
UVTOP335-TFW-TO39		Flat Window	120	200	120
UVTOP335-TFWR-TO39	TO-39	Flat Window	165	275	120
UVTOP335-HL-TO39		Hemisph. Lens	180	300	7
UVTOP335-BL-TO39		Ball Lens	240	400	7
UVTOP335-FW-TO18	TO 40	Flat Window	210	350	120
UVTOP335-BL-TO18	TO-18	Ball Lens	210	350	10

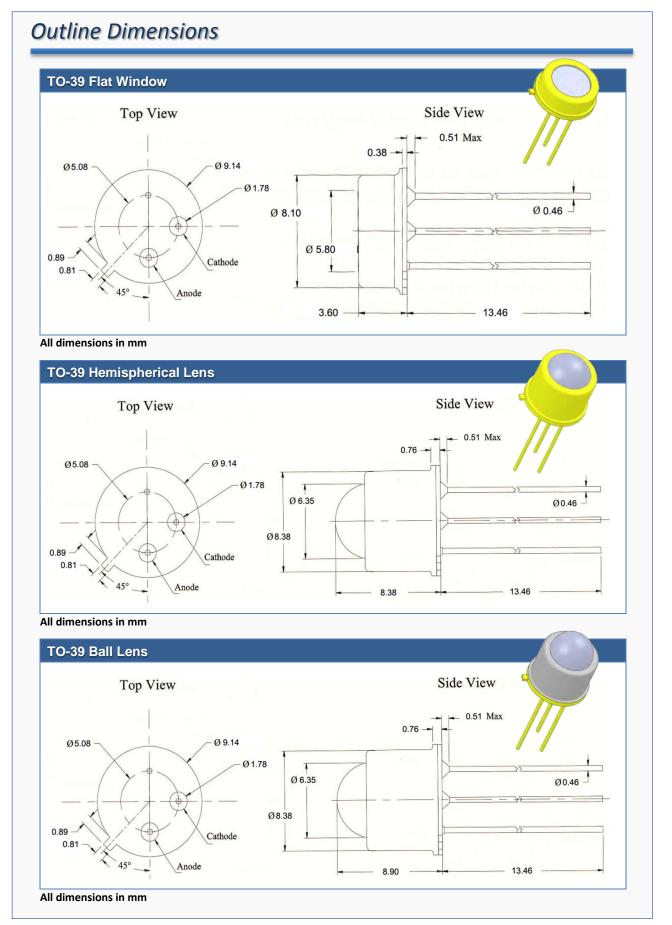

*output power measurement tolerance: ± 10 %

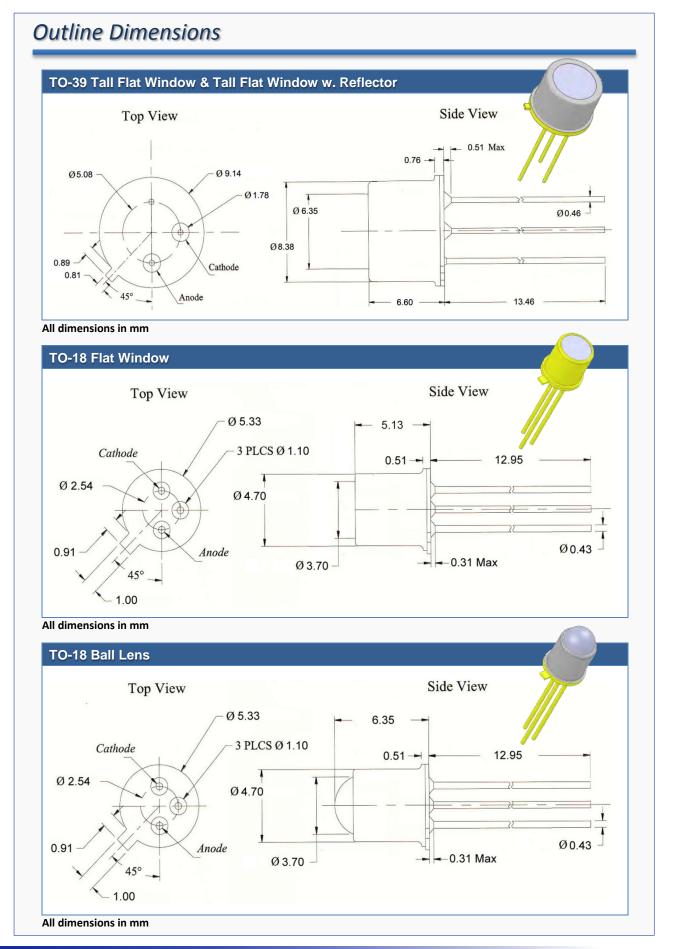

Open Can version (TO18 or TO39, no cap, no window) available on request

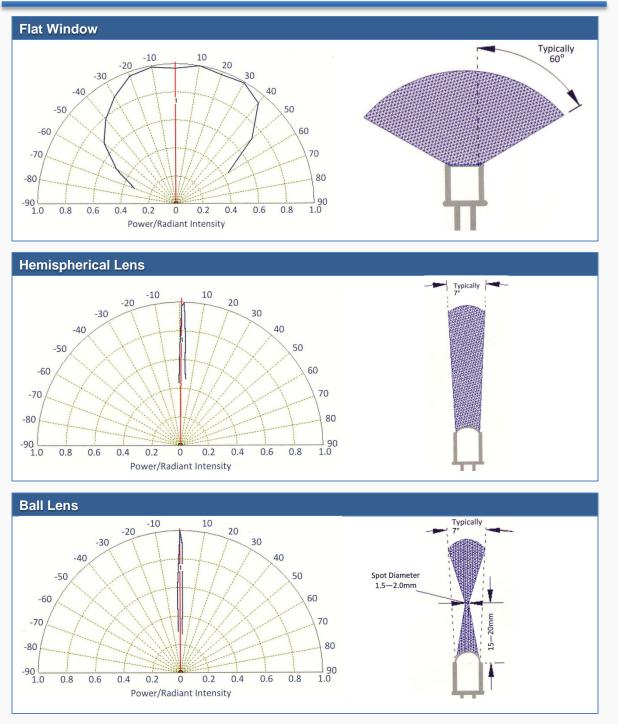

v 2.0 24.06.2013


Performance Characteristics




Peak Wavelength vs. Forward Current Wavelength, nm -Ó Forward current, mA


Normalized Forward Voltage vs. Temperature



Device Materials

Part	Material		
Header	Fe-Ni alloy, plated Ni-Au		
Leads	Fe-Ni alloy, plated Ni-Au		
Lens	SiO ₂		
Bonding Wires	Au		

Emission Characteristics

Precautions

Soldering:

- Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux.
- Do only solder the leads. Soldering of header or cap will damage the LED
- Do only cut the leads at room temperature with an ESD protected tool
- Do not solder closer than 3 mm from base of the header
- Do form leads prior to soldering
- Do not impose mechanical stress on the header when forming the leads
- Do not apply current to the LED until it has cooled down to room temperature after soldering

Recommended soldering conditions:

dip soldering		hand soldering		
pre-heat time	max 30 s	soldering time	max 5 s	
dipping time	max 5 s			
solder bath temperature	max 190 °C	solder temperature	max 190 °C	

Above table specifies the maximum allowed duration and temperature during soldering. It is strongly advised to perform soldering at the shortest time and lowest temperature possible.

Cleaning:

Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended

DO NOT USE acetone, chloroseen, trichloroethylene, or MKS DO NOT USE ultrasonic cleaners

Static Electricity:

UVTOP are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

UV-Radiation:

During operation these LEDs do emit **high intensity ultraviolet light**, which is hazardous to skin and eyes, and may cause cancer. Do avoid exposure to the emitted UV light. **Protective glasses are recommended**. It is further advised to attach a warning label on products/systems that do utilize UV-LEDs:

Operation:

Do only operate UVTOP LEDs with a current source.

Running these LEDs from a voltage source *will* result in complete failure of the device. Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice